机械加工的基础理论知识平时都能遇到但你知道其中的真正含义吗在切削加工中,金属切除率与切削用量三要素ap、f、υc均保持线性关系,即其中任一参数增大一倍,都可以使生产率提高一倍。然而由于刀具使用寿命的制约,当任一参数增大时,二参数必须减小。因此,在制定切削用量时,三要素获得最佳组合,此时的高生产率才是合理的。所以下一步我们要对刀具作一下分析。
当转速n一定时,刀具切削刃各点的切削速度不同。考虑到切削用量将影响刀具的磨损和已加工表面质量等,确定切削用量时应取最大的切削速度,如外圆车削时应取待加工表面的切削速度;钻头钻孔,应取钻头外径的切削速度。
切削速度对刀具的使用寿命影响很大,例如用硬质合金车削,当切削速度为80米/分钟时,刀具使用寿命是60分钟,而切削速度提高为160米/分钟时,刀具寿命只有3.75分钟,相差16倍。这是随着切削速度提高,切削温度提高很快,摩擦加剧,使刀具迅速磨损。
副切削刃λs′——切削刃上除主切削刃以外的刃,起始于主偏角为零度的点。(读作:兰姆达爱斯撇)。
刀尖——指主切削刃与副切削刃的连接处相当少的一部分切削刃,具有曲线状切削刃的刀尖称为修圆刀尖,rε为刀尖圆弧半径(rε读作:啊尔艾)。(ε读作:爱普西隆)
切削液的冷却性能受切削液本身的温度影响很大。例如:用5~10℃的切削液可比40℃的切削液降低刀具温度75~100℃,刀具的使用寿命可提高1~2倍。因此要求切削液要有一定的流量和流速,保持切削液处于较低的温度。
5、切削液的影响:在切削过程中,使用切削液,不但由于降低摩擦可以减少热量产生,而且随切削液的流动还可以带走一部分热量。
刀具在切削过程中,要承受很大的压力,很高的温度,剧烈的摩擦,在使用一段时间后其切削性能大幅度下降或完全丧失切削能力而失效。刀具失效后,使工件加工精度降低,表面粗糙度增大,并导致切削力加大,切削温度升高,甚至产生振动,不能继续正常切削。
切削刀具是由一个或多个刀齿构成的。每个刀齿的切削切削刃都是由前刀Hale Waihona Puke Baidu与后刀面形成的刀楔形成的。
前刀面Aγ——刀具上切屑流过的表面。如果前刀面是由几个相交面组成,则从切削刃开始,依次把它们称为第一前刀面、第二前刀面、第三前刀面等。(Aγ读:爱伽马)
1ag真人国际官网、工件材料的影响:工件材料的强度越高,产生的切削热越多;工件材料的传热速度慢,切削热越高;一般合金钢强度大于碳素钢,而热导率又低于碳素钢,所以切削热要高很多。
2、切削用量的影响: 切削用量中对切削温度影响最大的是切削速度,其次是进给量,而背吃刀量影响最小。
3、刀具几何参数的影响:刀具的前角在5°~18°范围内,前角大,切削温度降低;当前角增加到25°时,因刀头散热体积减少,降温不明显。减少主偏角,切削层宽度增大,厚度减小,又因刀头散热体积增大,故温度下降。
(3)、主截面 主切削刃上任一点的主截面是通过垂直于主切削刃(或它的切线)在基面上的投影截面。
高的硬度。 刀具材料必须具备高于被加工材料的硬度,一般刀具材料的常温硬度都在62HRC以上。(最少要比被加工材料高出20~30HRC)。
高的耐磨性。 耐磨性是刀具抗磨损的能力。它是刀具材料力学性能、组织结构和化学性能的综合反映。
足够的强度和韧性。 为能承受很大的压力,以及冲击和振动,刀具材料应具有足够的强度和韧性。一般强度用抗弯强度表示,韧性用冲击值表示。
切削力来自于切削过程中: 克服切削变形区材料塑性变形所需的抗力, 克服切削变形区材料弹性变形所需的抗力。克服切屑对前刀面的摩擦力和刀具后刀面对已加工表面和过渡表面的摩擦力所需的抗力。
在切削过程中,背吃刀量ap增加一倍时,切削热Q也增加一倍,切削速度υ的影响其次,进给量的影响最小。
精加工刀具及切削厚度较小的刀具(如多刃刀具),磨损主要发生在后刀面上,为降低磨损,应取较大的后角;粗加工刀具要求刀刃坚固,应取较小的后角。
工件强度、硬度较高时,为保证刃口强度,宜取较小的后角;工件材料软、粘时后角摩擦严重,应取较大的后角;加工脆性材料时,载荷集中在切削刃处,为提高切削刃强度,宜取较小的后角。
内孔加工刀具(如铰刀、丝锥等)的刃倾角方向应根据孔的性质决定。左旋槽(λs为负值)可使切屑向前排出,适用于通孔(不易扎刀,内孔光洁度也好),右旋槽适用于不通孔。
1、润滑作用 切削液能渗入到刀具、切屑、加工表面之间而形成薄薄的一层润滑膜或化学吸附膜,因此,可以减小它们之间的摩擦。
水溶液的冷却性能最好,乳化液次之,油类最差。水的热导率为油的3~5倍,比热容为油的2~2.5倍,汽化热为油的7~13倍。切削液的冷却性还与其泡沫的存在有关,由于空气的导热性比水差,流体中泡沫的存在会降低冷却性能。消除泡沫是加消泡剂。
切削速度由刀具材料的耐热性决定,同时受被加工材料的加工性影响很大。例如一把铣刀铣合金钢时选用8米/分钟的切削速度,而铣削铝合金时,同一把铣刀可达到200米/分钟。
进给速度 进给速度是工件或刀具每回转一周时两者沿进给运动方向的相对位移,符号用f,单位mm/r(毫米/转)。而对于刨削等主运动为往复运动的加工,进给量f的单位为mm/双行程(mm/dst)。
后刀面Aa——与工件上切屑中产生的过渡表面相对的表面。同样也可以分为第一后刀面、第二后刀面。第一后刀面称为刃带。 (Aa读作:爱阿尔法)
2、直线型过渡刀刃多用于刀刃形状对称的切断刀和多刃刀具,直线、直线型过渡刀刃一般为主偏角的1/2。
修光刀刃 作用:能减少车削后的残留面积,降低工件表面粗糙度。修光刀刃的长度一般为(1.2~1.5)f,(f为走刀量)。
选用原则:在机床、夹具、工件、刀具系统刚性较好的情况下,采用修光刀刃才能取得好的效果,否则容易引起振动。
修光刃的研磨:刀具的粗糙度应比工件的要求高出一至二个等级,才能加工出符合要求的工件粗糙度,因此,要求在砂轮上磨刀以后,还要按照上图方向用油石仔细研磨。
后角的作用是减少刀具后刀面与工件之间的摩擦。但后角过大会降低切削刃强度,并使散热条件变差,从而降低刀具寿命。
刀具在工作中要承受很大的压力和冲击力。同时,由于切削时产生的工件塑性变形以及在刀具,切屑、工件相互接触表面间产生的强烈摩擦,使刀具切削刃上产生很高的温度和受到很大的应力。因此,作为刀具材料应具备以下特性:
初期磨损阶段:这阶段磨损过程较快,时间短。(因新刃磨的刀具表面尖峰突出,刀具后刀面与加工表面间的接触面积小,压强很大,造成尖峰很快被磨损,随着磨损量的增加,接触面积逐渐增大,压强减小,使后刀面磨损速度变缓。
正常磨损阶段:随着切削时间增长,刀具表面经前期的磨损,峰点基本被磨平,表面压强趋于平衡,刀具的磨损量缓慢、均匀地增加。切削较平稳,是刀具工作的有效阶段。
每齿进给量 对于铣刀、铰刀、拉刀等多齿刀具,还规定每齿进给量,即刀具每转过或移动一个齿时,相对于工件在进给运动方向上的位移量,符号为fz,单位mm/齿。
背吃刀量为工件已加工表面和待加工表面间的垂直距离,符号ap,单位为mm。它表示切削刃切入工件的深度。 dw-dm dw——工件待加工表面的直径
前角的作用: 前角大,刃口锋利,切削层的塑性变形和摩擦阻力小,切削力和切削热降低。但前角过大将使切削刃强度降低,散热条件变坏,刀具寿命下降,甚至会造成崩刃。
工件材料的强度、硬度低,塑性好,应取较大的前角;加工脆性材料(如铸铁)应取较小的前角,甚至是负前角。
一、切削用量 切削用量是指切削速度、进给量和背吃刀量的总称,一般叫做切削三要素。在切削加工中,需要根据不同的工件材料、刀具材料和其他技术、经济要求来选择适宜的切削用量。其分别定义如下:
1、切削速度是指刀具切削刃上选定点相对于工件的主运动的瞬时速度(大多数切削的主运动采用回转运动)。回转体(刀具或工件)上选定点的切削速度υc(单位是m/min或m/s)的计算公式为: υc = πdn/1000
急剧磨损阶段:经正常磨损后,磨损量达到一定数量值,刀刃已变钝,切削力、切削温度急剧升高,磨损加剧,刀具很快失效。在这阶段切削,既不能保证加工质量,刀具材料消耗也多,甚至崩刃而完全丧失切削能力。这时一定要重新刃磨或换刀。
切削液是改善加工过程,减少刀具磨损,提高加工质量和效率的有效途径,尽管近年来干式切削技术得到了快速发展,但使用切削液仍是目前生产中提高刀具切削效能的主要途径。
在切削加工时,刀具切入工件,使被加工材料产生弹性变形和塑性变形而形成切屑所需要的力称为切削力。